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4 Let L = (p, p 2'*"'' Pn) be a list of real numbers in the interval

(0, 1]. The one-dimensional bin packing problem is to place the Pi s

j into a minimum number of unit-capacity bins. For any algorithm A, let

A(L) denote the number of bins used by A in packing L and let OPT(L)

I .denote the minimum number of bins needed to pack L. It is shown that,
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I. Introduction

Let L = (p1  p2 ' "' Pn) be a list of real numbers in the interval

(0, 1]. The one-dimensional bin packing problem is to place the pi's

- into a minimum number of unit-capacity bins; i.e., the sum of the numbers

* in each bin can be at most 1. Because this problem is known to be NP-I
hard [8], much work has been done in the study of heuristic algorithms

with guaranteed performance bounds [12, 13, 14, 16].

his paper - concerned with algorithms for which the pieces

-- (numbers) in list L are available one at a time, and each piece must be

placed in some bin before the next piece is available; such an algorithm

is referred to as on-line -42-,-16]. The performance measure used is

the ratio of the number of bins used by an algorithm A in packing list

L, A(L), to the optimum (minimum) number of bins required to pack the

!* list, OPTL).

Example 1. Consider the list L, = (3/4, 1/6, 1/6, 2/3, 1/4). One possible

packing algorithm is the well known First-Fit (FF) Algorithm [12,13,14],

which places each piece in the first bin which has enough available

space. As shown in Figure la, this algorithm leads to a packing which

uses three bins. An optimal packing requires only two bins (see Figure

lb). Notice that FF(L1 ) OPT(L1 ). U

AWWe are interested, however, in the ratio -T(L) for lists L withOPT (L)

many pieces. In particular, we wish to determine a lower bound on the

1 performance ratio

lim £ max A(L)

I n-' OPT(L)n OPT(L)

1 .



1 3

.3/4 2/3

1/61

* I

a) Packing L1 by the First-Fit Algorithm: FF(LI) = 3.

2/3
3/41/

?.i 1/6

b) An optimal packing of LI: OPT(LI) 2.

Figure 1. Packings of L1 from Example 1.

1.
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Example 2. For n even, let the list L2 consist of n pieces of size 3/8

and n pieces of size 5/8. The First-Fit Algorithm uses 3 bins, compared

to an optimal packing of n bins (see figures 2a and 2b). Thus, we know

*that, for the First-Fit Algorithm,

• 3
FF(L2) OPT(L 2)"

(In fact, it is known [12,13], that there is a list L for which

17
FF (L) - T OPT (L).) 

* We shall show that there is no algorithm which can always use fewer than

1.536 OPT(L) number of bins. Thus, for any packing algorithm A,

lim I max A(L) ) > 1.536
n- - OPT(L) = nO(L

This lower bound is an improvement over the bound of 1.5 proved by

Yao [16].

On the upper bound side, Yao in [16] gave an algorithm with a

performance ratio of 5/3, an improvement over the 17/10 of the First-

Fit Algorithm. Brown [41 has an algorithm with a slightly better

performance ratio of about 1.65.

Much work has recently been done with two-dimensional bin packing.

,- j Various algorithms [1, 2, 3, 7, 9] have been proposed, many using ideas

from one-dimensional packing algorithms [12,13,14 ]. Some work on two-

dimensional lower bounds has also been done [5,6, 15]. In particular,

the 1.536 lower bound presented in this paper extends immediately to

two dimensions and gives a 1.536 lower bound for any on-line two-dimen-

sional algorithm which packs pieces in order of decreasing or increasing

height or increasing width [6].
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F 3 1,81. 3/8 .

3/8 3/8 5/8 5/8

n/2 bins n bins

a) Packing L2 by the First-Fit Algorithm: FF(L2) = 3n

S3/8 3/8

5/8 5/8

n bins

b) An optimal packing of L2 : OPT(L 2 ) z n.

Figure 2. Packings of L2 from Example 2.

.1.
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II. An Example

1
Yao [16] used a list consisting of pieces of sizes t2h, s i+ w,

S+ e in order to obtain his - lower bound for any on-line bin packing

2 211

• algorithm. In this section we show that the result can be improved to

9 1.535 by considering a list with pieces sized - 3e, - + e,

1+ 6, + e. In Section III the method is generalized to a list with

pieces of t different sizes. The work in this section is therefore only

a special case of what will be shown, but it is presented here to

illustrate the method and therefore make the proof of the main theorem

i09
easier to understand. (Also, -M- is not much smaller than 1.536.)

71

Let e be a small positive number, 0 < e < I For n a
43-42-3

multiple of 42, consider the list L = L1 L2 L3 L 4 , where

L consists of n pieces of size - 3e,
14

L 2 consists of n pieces of size- + e,
7

L3 consists of n pieces of size 3 + e,
31

L4 consists of n pieces of size - + e.

Noting that
n

OPT(L 1 ) - U
n

OPT(L 1 L2) = ,
n

OPT(L 1 L2 L3 ) =,

OPT(L) =n,

we can define the ratios
A(L 1 ) 42

1 42rl(n) OPT (LI)

A(L 1 L) 6
r(Ln)) 6A(L (2.1)r 2 (n) OPT(L1 L2) n '
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A(LL 2L3) 2
r3(11) OPT(LIL2 L3 )=n

4 r4 (n) - -(L _ - A(L)4 OPT (L) n

We shall prove that

109

maxfrl(n), r2 (n),' r3 (n), r4 (n)j 109

Let B denote the set of bins packed by an algorithm A, after the

pieces in LI L2 L3 have been packed. Each bin b wB (1 5 w S IBI) contains

mI pieces of size - 3 m pieces of size 1 + e, and m3  pieces
2W 2 w 7 3,

of size - + c. (Note that mn ,m , and m, are nonnegative integers,
3fsze +e l'w' 2,wl 3,'w

0 ! mn w  42, 0 !5 m2  < 7, 0 ! m3  < 3.) For notational convenience,

we shall omit the double subscript and simply write m. when we mean

M. . We define the set of bins ai(l : i : 3) as follows:
. , .

i =(bw e Bib is at least half full, m. # 0, and m. 0 for

* l~j<i].

In other words, a bin b is inw

Ci if Lml + 7 m2 + 3lm 3 >-1 and mi# 0
1 1 i

Pif -n+- -1 andm 2 0, m, 0
1 1

Ci if m3 > - and m '0, mi=m 2  0.

Similar, we define i(1 ! i : 3) to be:

(b W wBib is less than half full, mi # 0, and m. = 0 for

j i

Thus, a bin b is in" w
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114 1 1 3 10 fI 'A an m2 0 i2I 2 + 3 < and m2 + 0

2 if I m<2 + m3 < and m 2 # 0, m = 0

3 1 and in 3i 2  0.

iiLetting lcil (I oil ) represent the number of bins in ai (0i), we have

A(L1) = 1a1  + 1511

A(L1 L2 ) = Ial + Ioll + IY21 + 1021 (2.2)

A(LI L2 L3 ) = Iall + loll + 1I21 + 1 21 + I3I + 1031
1

Notice that no two pieces of size - + e will fit in the same bin, nor2

will any of the n pieces of size T + e fit in an , a2' or a bin, so

A(L) 2 n + I1 1 +12I +aI3 (2.3)

Let us assume that

maxfrl(n), r2 (n), r3 (n), r4 (n)j < 10-9 (2.4)
1 2 3 471

Combining equations (2.1), (2.2), and (2.3), this tells us

n 109 1 ,1 + ll
42 71 Il

n 109 l7 _ 1 + Ill + 2 + 1021

n2 109 •  + I1 o + + 1021 + 1131 + 131(2.5)

109 > V
1 I1 + 1C21 + I + n

Because there are n pieces of size 42 3e, of size - + s, and n of

size - + e,

I
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b w 9 B

n m2  
(2.6)

b LB
w

From (2.6), we immnediately have

4 4 '
42 4 2 I

b LB

- 2nm (2.7)

2 b B
w

Summuing equations (2.5) and (2.7),

109 1 1 14 1+1
Sn(~ + + -1+ 1) - n (Z" + 1+)

;P 41 ot 1 + 310 1 + 31c~ + 21 021 + 2Ia3I + 1031 + n (2.8)

Z-- 'B2 - L 3

Simplifying inequality (2.8) and rearranging terms:
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4 14
P

mb + m2 + m
3) > 4 1 I + 3 101 1 + 31 2l + 21 2I + 21e3l + I63I

w

4 1 + m2 + 3) + 4 1 m + m 3)
e bm 2 b 4 m

w w 2b+ I (f m2 + m3 )  (2 m 2 + M 3 ) + ! 3  L m3
b w ¢ a b w c 2 b w c 3  b w c 03

> 41ol + 31011 + 31a2l + 21021 + 21'31 + 1031 (2.9)

By considering separately each of the summations on the left hand

side., we show that inequality (2.9) gives a contradiction.

(a) For b c -M +m + 3  .
w 1: 42 1 7 ..2 '3 ..3

4 1
4 I + Im + m3 < 4

Zi 1 1 2

(b) Forb c -m + i I <
w 1 42 1 7 2 3 3 2

4m 1 + m2 + m3 < 2

(c) For b co 2 :  2 + I m 1
w 2 7 3 3

M2 + 2 m3 72 6 + m2

Since the left hand side is an integer, m2 + 2-3 - 6

13
12 m2 + m3 ;3

L
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(d) For b 2 m2 + - m3 <

1

7 m 2 +m 3 < 2

(e) For b e a m3 <1w 3 33

1 1

(f) For b G m3 <w 3 3 2

m3

Combining (a) - (f),

r" 4 1 M +4 m + + m

(72+ ml + m2 + 34bw 1 w i

+ M (T m) + m (m+ m )+ in + 1L m
bw y3 2 3c bc3

w 2 2 b w c 3 w 3

< 41ll + 3111+ 312I + 21 21 + 21a 31 + 131

This contradicts inequality (2.9). The assumption in (2.4) must be in-

correct, from which we conclude that

A(L 1 ) A(L1 L2 ) A(L 1 L2 L3 ) A(L) 109
max [OPT(LI) 1 OPT(LL 2 ) , OPT(LIL 2 L3 ) , OPT(L)' 71

1.
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III. The Main Result

Define the sequence of integers (an , for n 1 1, by

a = 2

n (3.1)
a =1+ a.

i=1

Thus, (a - 2, 3, 7, 43, 1807, 3263443, .
n

and notice that

1 1 1 1 1
ilai 2 3 +3+7+ +l-04+3 =11.

This sequence has been studied by Golomb [10,111 and it is conjectured

that the closest approximation to I from below, which is a sum of k

reciprocal integers, is given by

1 + 1 +1
a1 a2 ak a k+l-I'

for every positive interger k.

In the proof of our lower bound result, we shall make use of the

following simple lemma.
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Lema Let (a k be the sequence of integers defined above in (1). Then,

for 1 !r k : j,

+ ~k
a k a-i1

Proof:

We first observe that

ak k k+1

Then (k+ 1)a k -(k+l1) k kak

k+i
ak a k-i1

and so, for j 2:k, ak + I ki

Motivated by the work in Section II, we now state and prove our

main result.

Theorem. For any on-line one-dimensional packing algorithm A,

t

iimC max A(L)~i > 1 .5363
n-' OPT (L) n OPT (L) t

Proof:

j For any positive integer t 3, let e be a small fixed number,

<1 1

0
a a 1(t1
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We define pieces p,, ...~ Pt to be of sizes

and p. a
j al 1 .

for 2 5 j S! t. Consider the list L =L L 2  -. Lt where each L i consists

of n pieces of size pi) for n some multiple of a -1. Then, for

OPT(Ll1L 2 ...Lk) a an+ 1- (3.2)

* S and we can define the ratios

V rkn) A( 1 L2 ... Lk) (3

* OPT (L L2 ... L~

* We shall prove that

max (r (n) 2: Rt (3.4)
1 : kS t

*1 where

* t

L a -
Rt -ili(3.5)

1 i=li

Let B denote the set of bins packed by an algorithm A, after the

(t - 1)n pieces in list L ..L2 .* L t-1have been packed. Each bin b w B

1: (lWA BI) contains m~ pieces of size p,, for all I1!f. i St -1I. For

ii'
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notational convenience, we shall omit the double subscript and simply write

m. when we mean m. Note that0!- m. < a for 15J:t-l. For
at+lj I

1 k 5 t-l, the set a k is defined to consist of those bins bw s B which are

at least half full and in which the smallest piece has size Pk" Similarly,

we define 0 to be the set of bins b e B which are less than half full and inwedfn k tob h e fbn w

which the smallest piece has size Pk. So Iakl'(lk represents the number of

bins in ak (Pk) and, for 1 - k < t-I

k
(A(L L L (Iail + Ioil). (3.6)A(L1 L2 "'K) it~l

* I

Having packed L1 L2 ... Lt -1' we note that it will not be possible to

place any of the remaining n pieces of size Pt in any ak bin. So we. k
also have

t-l
A(L I L2 ... Lt) > n + i=l . (3.7)

Let us assume that

max [r (n)) < Rt • (3.8)
is if t

Making use of equations (3.2), (3.3), (3.6), and (3.7), this assumption

leads to the following inequalities, for 1 f k 5 t- 1:

k

a n 1 *Rt Z (I il + il)
t+l-k il

(3.9)
t-I

n • Rt  n+

II

.l
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Because there are n pieces of each size pi, we note that

n =
n b t-k+lb 9B

w

for all k in the range 2 : k T t. Thus,

= - LIm~ (3.10)

j -

k k b B tl b
w

Summing equations (3.9) and (3.10) over k gives

1- t
nRt -1 + nR - n k

k=1 at+,l-k- 1 
t  k-2 a k

t-1 k t-1 t
> i'l1i + Ii) + n + = i m" a+b

k-l -- li~l k=2 k- b 6 Bw

From (3.5), we observe that

t
k~2k

Rt t- k

ki at+l-k-1

and so inequality (3.11) can be simplified to give

t

a~ k b LB- i (3.12)
wE k (i Ori ili 1'

Inequality (3.12) further simplifies to give
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b B k ak m k (ji+)1 j I + jj I)~ (3.13)
a t It-i~

w

The remainder of this proof consists of showing that (3.13) gives

a contradiction. In particular, we shall show that

k

for any bin b a (I j t- 1) and that
w t-j

* a k t-k+l (3.15)

k=2 k

for any bin bw C .t-j (1 : j £ t - 1). From this we deduce that the

assumption in (3.8) is incorrect, thereby proving the assertion of

(3.4). The theorem follows immediately.

We first prove assertion (3.14). For b s. , then
* w t-j

Pi ml + p2 m2 + ... + p t-mtl r 1 (3.16)

and pt. mt.J is the first nonzero term. There are two cases.

(i) Assume that j £ t-2. Then

- a. t-i+l

and

1- m + M 1 + m(3.17)
a +- t-i - ai t-i+l aTj2 " t-j(

L
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Recalling that m j < at+l- j , then we know

mt j < aj+ 1  (3.18)

Also, as a consequence of (3.1),

a+ 2 -1 = aj+l(aj+ 1 - 1) (3.19)

Using (3.18) and (3.19), inequality (3.17) gives

a i + i m t- +  < + a (3.20)

+2.

From (3.1), we note that a j+- 1 is divisible by ai, for all i £ j.

Thus, the left hand side of (3.20) is a multiple of a l and we
a.

have

* 11
a 1 1 mt-j + mi l
. -l mt-

j+l 1- a.

Thus,

i+! + I m j+
aj+l-I mt-j a t-i+l

Applying the Lemma,

j+1 + i j + 1
" a j+l'-l " j iT 1 mtS' +

and we have proved inequality (3.14) for jS t-2.

fo I2

1.
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(ii) Assume that j = t -; i.e., b 6al. Since p. > for
w at+l- iIii

2 i ! t -1, we conclude from (3.16) that

1 t-l
11

I (t .)6]m 1< 1.i~~~~~~ Z a- t-l¢m a mt-i+l "

i=2

Recalling how we chose s,

"1 t-I m

m1  + tj m < 1+ am1 (3.21)
t =2 t (at'-)

Because m1 ! a - 1, the right hand side of (3.21) is less than I +-.
1 t aat

As in case (i), we also note that the left hand side of (3.21) is a

multiple of a-- and that . > --. Thus,
a- a- at

t t-

7t - m + E a t-i+l 5 1 (3.22)
i=2 i

Similar to case (i), we multiply both sides of (3.22) by t and apply the

Lemma in order to obtain the desired result:

a a - ~ :5 t.
i-2 i

We now prove assertion (3.15). For b w *,t-j then

plm, + P2 m2  + "'" + Pt -lI < 2

and mt-j is the first nonzero term. There are two cases.
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(i) Assume that j 5 t-2. Then

"je l 1(3.23)-a t-i+l 2
i.=2 a

Multiplying both sides of (3.23) by j +2 and then applying the Lemma,

j+l

Ia-- mt-+ 1  < 1+2 (3.24)

For j 2 2, j+2 j and the result is proved. For j =1, (3.24) reduces
2

to t Y-. Since mt.I is an integer, this says mt.I 1 1 and once again

the desired result holds.

(ii) Assume that j = t-1; i.e., b Ci Similar to inequality (3.21),

we have

1 mm + <-- +  1 (3.25)
1 2 mt-i+a

t i=2 i t

Multiplying both sides of (3.25) by t and applying the Lemma,

t i m<t + t-mr ~ < " + a

12a -I1 t-i+l 2 a

For t 2 3,

t t-2
a t  2

and so

ia2aihl mt'+mipod.
L ~ and the theorem is proved.
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